Document Type : Original Article

Authors

1 Horticultural Science, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Iran

2 Horticultural Science, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Iran.

3 Department of Environmental Horticulture, University of Florida, USA

Abstract

The up-to-date achievements in expansin (EXP) researches were evaluated. Plus making the strength that the plants need, cell walls define cell function, cell shape, and cell size. Cell wall (CW) proteins that are famous as expansins are consist of four subfamilies a-expansin, b-expansin, expansin-like A, and expansin-like B. These proteins alter CW extricating, and these sorts of proteins are found in plant kingdoms and a few microbial living beings, and other living beings like snails. The results of EXP promoter analysis on the 1.5 kb sequence upstream of the ATG (start codon) in Arabidopsis and their orthologs in P. persica by PLANT CARE revealed that different transcription factors (TF) are attached to specific DNA binding sites. In this assay, the genome sequencing of peach plants from the Rosaceae family (Prunus persica) has been carried out, so more accurate applications can be designated by analyzing their regulatory areas. In the next step, the good genes were transferred into the early or late flowering plants, and consequently, their yield and resistance against biotic and abiotic stress increased.

Graphical Abstract

In Silico Evaluation of Expansin-Gene Function in Softening and Fruit Ripening

Keywords

  1. Cosgrove DJ. (2015). Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol. 25: 162–172. [crossref], [Google Scholar], [Publisher]
  2. Fukuda H. (2014). Plant cell wall patterning and cell shape. Wiley, Hoboken. [Google Scholar], [PDF Download]
  3. Kende H, Bradford KJ, Brummell DA, Cho, HT, Cosgrove DJ, Fleming AJ, Voesenek LACJ. (2004). Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol. 55(3): 311–314. [crossref], [Google Scholar], [Publisher]
  4. Vassilev D, Leunissen J, Atanassov A, Nenov A, Dimov G. (2005). Application of bioinformatics in plant breeding. Biotechnol. Eq. 19: 139-152. [crossref], [Google Scholar], [Publisher]
  5. Dagostino D, Aversano M, Chiusano ML. (2005). ParPEST: A pipeline for EST data analysis based on parallel Computing. BMC Bioinformatics. 6: 1-9. [crossref], [Google Scholar], [Publisher]
  6. Wei P, Chen S, Zhang X, Zhao P, Xiong Y, Wang W, Wang X, (2011a). An a-expansin, VfEXPA1, is involved in regulation of stomatal movement in Vicia fabaChin Sci Bull. 56(33):3531–3537. [crossref], [Google Scholar], [Publisher]
  7. Wei PC, Zhang XQ, Zhao P, Wang XC. (2011b). Regulation of stomatal opening by the guard cell expansin AtEXPA1. Plant Signal Behav. 6(5):740–742. [crossref], [Google Scholar], [Publisher]
  8. Yan A, Wu M, Yan L, Hu R, Ali I, Gan Y. (2014). AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. PLoS One. 9(1):1–10. [crossref], [Google Scholar], [Publisher]
  9. Kwon YR, Lee HJ, Kim KH, Hong, SW Lee SJ, Lee H. (2008). Ectopic expression of Expansin3 or Expansin β 1 causes enhanced hormone and salt stress sensitivity in Arabidopsis. Biotechnol Lett. 30(7):1281–1288. [crossref], [Google Scholar], [Publisher]
  10. Mollet JC, Leroux, C, Dardelle F, Lehner A. (2013). Cell wall composition, biosynthesis and remodeling during pollen tube growth. Plants. 2(1):107–147. [crossref], [Google Scholar], [Publisher]
  11. Cho HT, Cosgrove DJ. (2002). Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell. 14(12):3237–3253. [crossref], [Google Scholar], [Publisher]
  12. Kuluev BR, Knyazev AB, Lebedev YP, Chemeris AV. (2012). Morphological and physiological characteristics of transgenic tobacco plants expressing expansin genes: AtEXP10 from Arabidopsis and PnEXPA1 from poplar. Russ J Plant Physiol. 59(1):97–104. [crossref], [Google Scholar], [Publisher]
  13. Lee HW, Kim J. (2013). EXPANSINA17 Up-Regulated by LBD18/ASL20 promotes lateral root formation during the auxin response. Plant Cell Physiol. 54(10):1600–1611. [crossref], [Google Scholar], [Publisher]
  14. Rose JK, Lee HH, Bennett AB. (1997). Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci USA. 94(11):5955–5960. [crossref], [Google Scholar], [Publisher]
  15. Rose JKC, Cosgrove DJ, Albersheim P, Darvill AG, Bennett AB. (2000). Detection of expansin proteins and activity during tomato fruit ontogeny. Plant Physiol. 123(4):1583–1592. [crossref], [Google Scholar], [Publisher]
  16. Brummell D, Harpster M, Civello P, Palys J, Bennett A, Dunsmuir P. (1999). Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell. 11(11):2203–2216. [crossref], [Google Scholar], [Publisher]
  17. Chen F, Dahal P, Bradford KJ. (2001). Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiol. 127(3):928–936. [crossref], [Google Scholar], [Publisher]
  18. Minoia S, Boualem A, Marcel F, Troadec C, Quemener B, Cellini F, Bendahmane A. (2015). Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening. Plant Sci. 1–8. [crossref], [Google Scholar], [Publisher]
  19. Cho HT, Kende H. (1997). Expansins and lnternodal crowth of deepwater rice. Plant Physiol. 2(113):1145–1151. [crossref], [Google Scholar], [Publisher]
  20. Choi D, Kim JH, Lee Y. (2008). Expansins in plant development. Adv Bot Res. 47(08):47–97. [crossref], [Google Scholar], [Publisher]
  21. Zou H, Wenwen Y, Zang G, Kang Z, Zhang Z, Huang J, Wang G. (2015). OsEXPB2, a β-expansin gene, is involved in rice root system architecture. Mol Breed 35(1). [crossref], [Google Scholar], [Publisher]
  22. Ma N, Wang Y, Qiu S, Kang Z, Che S, Wang G, Huang J. (2013). Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension. PLoS One. 8(10). [crossref], [Google Scholar], [Publisher]
  23. Yu Z, Kang B, He X, Lv S, Bai Y, Ding W, Wu P. (2011). Root hair-specific expansins modulate root hair elongation in rice. Plant J. 66(5):725–734. [crossref], [Google Scholar], [Publisher]
  24. Palapol Y, Kunyamee S, Thongkhum M, Ketsa S, Ferguson IB, Van Doorn WG. (2015). Expression of expansin genes in the pulp and the dehiscence zone of ripening durian (Durio zibethinus) fruit. J Plant Physiol. 182:33–39. [crossref], [Google Scholar], [Publisher]
  25. Civello PM, Powell AL, Sabehat A, Bennett AB. (1999). An expansin gene expressed in ripening strawberry fruit. Plant Physiol. 121(4):1273–1280. [crossref], [Google Scholar], [Publisher]
  26. Asif M, Lakhwani D, Pathak S, Gupta, P, Bag, SK, Nath P, Trivedi P. (2014). Transcriptome analysis of ripe and unripe fruit tissue of banana identifies major metabolic networks involved in fruit ripening process. BMC Plant Biol. 14(1):316. [crossref], [Google Scholar], [Publisher]
  27. Xu Q, Xu X, Shi, Y, Xu J, Huang B. (2014). Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress. PLoS One. 9(7):e100792. [crossref], [Google Scholar], [Publisher]
  28. Lü P, Kang M, Jiang X, Dai F, Gao J, Zhang C. (2013a). RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis.  237(6):1547–1559. [crossref], [Google Scholar], [Publisher]
  29. Lü P, Gao J, Zhang C. (2013b). RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis. Planta. 237(6):1547–1559. [crossref], [Google Scholar], [Publisher]
  30. Li AX, Han YY, Wang X, Chen YH, Zhao MR, Zhou SM, Wang W. (2015b). Root-specific expression of wheat expansin gene TaEXPB23 enhances root growth and water stress tolerance in tobacco. Environ Exp Bot. 110:73–84. [crossref], [Google Scholar], [Publisher]
  31. Bae JM, Kwak MS, Noh MJ Oh, SA, Kim YS, Shin JS. (2014). Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis. Transgenic Res. 23(4):657–667. [crossref], [Google Scholar], [Publisher]
  32. Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A. (2001). Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci USA. 98(20):11812–11817. [crossref], [Google Scholar], [Publisher]
  33. Cho HT, Kende H. (1997). Expansins and lnternodal crowth of deepwater rice. Plant Physiol. 2(113):1145–1151. [crossref], [Google Scholar], [Publisher]
  34. Lee Y, Choi D, Kende H. (2001). Expansins: ever-expanding numbers and functions. Curr Opin Plant Biol. 4(6):527–532. [crossref], [Google Scholar], [Publisher]
  35. Guo W, Zhao J, Li X, Qin L, Yan X, Liao H. (2011). A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J. 66(3):541–552. [crossref], [Google Scholar], [Publisher]
  36. Zhou J, Xie J, Liao H, Wang X. (2014). Overexpression of β-expansin gene GmEXPB2 improves phosphorus efficiency in soybean. Physiol Plant. 150(2):194–204. [crossref], [Google Scholar], [Publisher]
  37. Han Y, Chen Y, Yin S, Zhang M, Wang W. (2015). Over-expression of TaEXPB23, a wheat expansin gene, improves oxidative stress tolerance in transgenic tobacco plants. J Plant Physiol. 173:62–71. [crossref], [Google Scholar], [Publisher]
  38. Li AX, Han YY, Wang X, Chen YH, Zhao MR, Zhou SM, Wang W. (2015a). Root-specific expression of wheat expansin gene TaEXPB23 enhances root growth and water stress tolerance in tobacco. Environ Exp Bot. 110:73–84. [crossref], [Google Scholar], [Publisher]
  39. Xing SC, Li F, Guo QF, Liu DR, Zhao XX, Wang W. (2009). The involvement of an expansin geneTaEXPB23 from wheat in regulating plant cell growth. Biol Plant. 53(3):429–434. [crossref], [Google Scholar], [Publisher]
  40. Won S, Choi S, Kumari S, Cho M, Lee SH, Cho H. (2010). Root hair-specific EXPANSIN B genes have been selected for Graminaceae root hairs. Mol Cells. 30(4):369–376. [crossref], [Google Scholar], [Publisher]
  41. Boron AK, Van Loock, B, Suslov D, Markakis MN, Verbelen JP, Vissenberg K. (2015). Over-expression of AtEXLA2 alters etiolated arabidopsis hypocotyl growth. Ann Bot. 115(1):67–80. [crossref], [Google Scholar], [Publisher]
  42. Abuqamar S, Ajeb S, Sham, A, Enan MR, Iratni R. (2013). A mutation in the expansin-like A2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana. Mol Plant Pathol. 14(8):813–827. [crossref], [Google Scholar], [Publisher]
  43. Rose JK, Lee HH, Bennett AB. (1997). Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci USA. 94(11):5955–5960. [crossref], [Google Scholar], [Publisher]
  44. Rose JKC, Bennett AB. (1999). Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci. 4(5):176–183. [crossref], [Google Scholar], [Publisher]
  45. Minoia S, Boualem A, Marcel F, Troadec, C, Quemener B, Cellini, F, Bendahmane A. (2015). Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening. Plant Sci:1–8. [crossref], [Google Scholar], [Publisher]
  46. Gustavsson J, Cederberg C, Sonesson U, Van Otterdijk R, Meybeck A. (2001). Global food losses and food waste: extent causes and prevention. Rome: Food and Agriculture Organization (FAO) of the United Nations; 2011. [Google Scholar], [PDF Download]
  47. Sarmast MK (2017) In silico Functional Analysis of FLC and FT-Genes Responsible for Postponing and Accelerating the Onset of Flowering. J Proteomics Bioinform 10: 267-276. [crossref], [Google Scholar], [Publisher]